مرجع فایل - قابل ویرایش )
تعداد صفحه : 26
ايده آل هاي خطي به ترتيب كوهن-مكوالي چكيده- G را يك نمودار غيرمستقيم ساده n راسي در نظر بگيريد و بگذاريد برايده آل خطي مرتبطش دلالت كند. مانشان مي دهيم كه تمام نمودارهاي و تري G ، به ترتيب كوهن- مكوالي هستند ، دليل ما بر پايه نشان دادن اين است كه دوگانه الكساندر I(G) ،خطي و ازمولفه است. نتيجه ما فرضيه فريدي را كه مي گويد ايده آل درخت ساده شده به ترتيب كوهن- مكوالي، هرزوگ، هيبي، مي باشد، وفرضيه ژنگ كه مي گويد يك نمودار وتري كوهن-مكوالي است اگر و تنها اگر ايده آل خطي اش در هم ريخته نباشد، را تكميل مي كند. ما همچنين ويژگي هاي دايره هاي مرتب كوهن- مكوالي را بيان مي كنيم و نمونههايي از گراف هاي مرتب غيروتري كوهن- مكوالي را هم ارائه مي كنيم. 1-مقدمه G را يك گراف ساده n راسي در نظر بگيريد پس G هيچ حلقه يا خطوط چندگانه اي پهن دو راس ندارد.) رئوس ومجموعه هاي خطي G توسط EG,VG را به ترتيب نشان دهيد. ما ايده آل تك جمله اي غير مربع چهارگانه با K كه يك ميزان است و جايي كه را به G ارتباط مي دهيم.ايده ال ايده آل خطي Gناميده مي شود. توجه اوليه اين مقاله ايده آل هاي خطي گراف هاي وتري است. يك گراف G وتري است اگر هر دايره طول يك وتر داشته باشد. اينجا اگر ،خطوط يك دايره طول n باشند، ما مي گوييم كه دايره وري يك وتر دارد اگر دو راس xj,xi در دايره به نحوي وجود داشته باشند كه يك خط براي G باشند اما خطي در دايره نباشد. ما مي گوييم كه يگ گراف G كوهن –مكوالي است اگر كوهن-مكوالي باشد. چنانكه هرزوگ، هيبي و ژنگ اشاره مي كنند، طبقه بندي تمام گراف هاي كوهن
قسمتی از محتوی متن پروژه میباشد که به صورت نمونه ، بعد از پرداخت آنلاین در فروشگاه فایل آنی فایل را دانلود نمایید .
« پرداخت آنلاین و دانلود در قسمت پایین »
مبلغ قابل پرداخت 11,400 تومان